Volumetric and Thermodynamic Properties of Liquid Mixtures of 2-*n*-Butoxyethanol with Water

P. J. Back,¹ R. Malhotra,¹ and L. A. Woolf^{1, 2}

Received August 22, 1997

p-V-T data for six compositions of 2-n-butoxyethanol (BE) and water have been obtained in the form of volume ratios at several temperatures in the range 278.15 to 353.13 K at pressures from atmospheric to 347 MPa or higher. One of the compositions is in the region where two phases exist at certain temperatures, while two compositions are near the boundary of that region. Densities at atmospheric pressure in a temperature range similar to that for the p-V-T data are also reported. Isothermal compressibilities, isobaric expansivities, and changes in the isobaric heat capacity have been calculated from the volumetric data for pressures up to 300 MPa. The values of normalized volume fluctuations obtained from the data at 0.1 MPa approach those of water for conditions which are close to those for phase separation in this system. Such behavior is not observed at 100 MPa, where such separation is suppressed.

KEY WORDS: compressibility; expansivities; 2-*n*-butoxyethanol; heat capacity; p-V-T data; Tait equation; volume fluctuations.

1. INTRODUCTION

Although this system has been studied extensively at pressures close to atmospheric, there are few data for its properties at high pressures. This work was performed principally to provide p-V-T data for the study by Mensah-Brown and Wakeham [1] of the effect of pressure on the thermal conductivity of mixtures of 2-*n*-butoxyethanol (BE) and water. Accordingly, two of the six compositions of the present work were close to but

0195-928X/00/0700-0191\$18.00/0 © 2000 Plenum Publishing Corporation

¹ Atomic and Molecular Physics Laboratories, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT 0200, Australia.

² To whom correspondence should be addressed.

¹⁹¹

outside opposite sides of the concentration region at which phase separation occurs [2-4] at atmospheric and higher pressures. Another composition was close to that of the lower consolute mixture and measurements for this mixture were made at temperatures extending to close to the lower consolute temperature at 0.1 MPa. (At 0.1 MPa the two-phase region exists for a small range of water-rich compositions at temperatures between about 322.3 and 403.3 K.) An extensive series of density measurements at 0.1 MPa has been made to assist the interpretation of the results at higher pressures. These data have enabled the effect of pressure and temperature on volume fluctuations in the system to be determined. An earlier paper [5] reported p-V-T measurements for pure BE.

2. EXPERIMENTAL

The BE was Fluka Chemika HPLC-GC grade material of stated purity <99.9% mol, which, before use, was fractionally distilled under reduced pressure in an argon atmosphere and then stored under helium. Temperatures were measured relative to IPTS-68 and converted to ITS90; they had an accuracy of ± 0.01 K and were constant within ± 0.005 K. Volume ratios $k = V_p/V_{0.1}$, with V_p and $V_{0.1}$, the volumes of a fixed mass of liquid at pressure p and 0.1 MPa, respectively, were measured with an automated bellows volumometer described in detail elsewhere [6].

A summary of the pressure measurement system is given in Ref. 7. Densities at atmospheric pressure (0.093 to 0.095 MPa) were measured for samples taken from the volumometer at the conclusion of the experiments for each composition with a reproducibility of $\pm 0.005 \text{ kg} \cdot \text{m}^{-3}$ with an Anton Paar Model DMA 602 densimeter calibrated frequently with water and dry nitrogen [8]. Measurements were also made for a series of standard solutions to enable determination of the composition of the volumometer samples.

3. RESULTS AND DISCUSSION

3.1. Volumetric Data

The experimental pressures, temperatures, and volume ratios are given in Tables I–VI for each mole fraction, x_1 , of BE. The molecular weights which were used were 0.118767 and 0.0180153 kg \cdot mol for BE and water, respectively. For the system with $x_1 = 0.04826$ the highest temperature used was 322.14 K, which is about 0.1 K below the temperature at 0.1 MPa at which a phase separation is expected [4], which persists to a temperature well above the highest attainable with the present volumometer [6]. The

Properties of Mixtures of 2-n-Butoxyethanol with Water

p (MPa)	k	p (MPa)	k	p (MPa)	k	p (MPa)	k
		T = 278	.15 K ; ρ(0.1) = 999.46 k	$g \cdot m^{-3}$		
2.547	0.9989	27.61	0.9883	138.74	0.9501	273.22	0.9148
4.996	0.9978	38.54	0.9841	158.58	0.9442	298.93	0.9091
9.839	0.9957	58.55	0.9766	177.93	0.9388	324.37	0.9036
14.605	0.9937	78.47	0.9695	198.48	0.9333	348.67	0.8987
19.579	0.9916	98.55	0.9627	223.71	0.9268	366.62	0.8951
24.218	0.9897	119.25	0.9561	248.98	0.9205		
		T = 288	.15 K; ρ(0.1) = 998.04 k	$g \cdot m^{-3}$		
2.547	0.9989	26.97	0.9887	138.58	0.9505	274.01	0.9153
4.996	0.9978	37.64	0.9846	158.24	0.9448	298.46	0.9098
9.519	0.9959	57.89	0.9770	178.10	0.9393	324.18	0.9043
14.585	0.9937	78.17	0.9699	198.24	0.9339	348.82	0.8993
19.955	0.9915	97.96	0.9632	224.32	0.9272	370.04	0.8950
23.522	0.9901	118.42	0.9567	248.48	0.9213		
		T = 298	.14 K ; ρ(0.1)=995.61 k	$g \cdot m^{-3}$		
2.547	0.9988	28.03	0.9879	139.10	0.9498	273.84	0.9148
4.996	0.9977	38.61	0.9838	158.67	0.9441	299.38	0.9091
10.155	0.9954	58.65	0.9763	178.36	0.9386	322.68	0.9041
14.535	0.9935	78.66	0.9692	199.31	0.9331	348.33	0.8989
20.055	0.9912	98.93	0.9624	224.32	0.9267	374.21	0.8938
23.011	0.9900	119.14	0.9559	248.47	0.9208		
		T = 313	.14 K ; ρ(0.1) = 990.28 k	$g \cdot m^{-3}$		
2.547	0.9988	27.58	0.9880	139.16	0.9493	273.34	0.9143
4.996	0.9977	39.07	0.9834	158.62	0.9436	298.75	0.9085
9.938	0.9955	58.76	0.9759	179.09	0.9378	323.95	0.9031
15.454	0.9931	78.51	0.9689	198.96	0.9325	346.87	0.8985
19.429	0.9914	98.56	0.9620	223.97	0.9261	374.55	0.8930
23.547	0.9897	118.60	0.9556	249.13	0.9200		
		T = 323	.14 K ; ρ(0.1) = 985.76 k	$g \cdot m^{-3}$		
2.547	0.9988	28.24	0.9872	138.72	0.9480	273.74	0.9124
4.996	0.9976	37.89	0.9832	158.76	0.9421	297.55	0.9070
9.396	0.9955	57.90	0.9754	179.08	0.9363	322.84	0.9015
14.535	0.9932	78.62	0.9678	198.64	0.9310	349.30	0.8960
19.404	0.9910	98.43	0.9610	224.14	0.9244	373.67	0.8912
23.646	0.9892	118.31	0.9544	248.75	0.9183		

Table I. Experimental Pressures, Volume Ratios, $k = V_p/V_{0.1}$, and Densities^{*a*} at 0.1 MPa for 2-Butoxyethanol (1) + Water (2), $x_1 = 0.006934$

^a Value at 338.13 K measured; values at other temperatures except 278.15 K interpolated from data at each temperature given in Table VIII. Value at 278.15 K obtained from extrapolation of the values at the higher temperatures.

p (MPa)	k	p (MPa)	k	p (MPa)	k	p (MPa)	k
		T = 338	3.13 K ; ρ(0.1	l) = 977.79 k	$g \cdot m^{-3}$		
2.547	0.9988	28.05	0.9873	139.14	0.9473	273.95	0.9113
4.996	0.9976	38.76	0.9829	159.10	0.9412	298.77	0.9056
9.568	0.9955	58.76	0.9750	179.23	0.9354	323.71	0.9003
14.860	0.9931	78.84	0.9675	198.62	0.9301	346.31	0.8957
19.554	0.9910	99.26	0.9603	223.70	0.9235	377.89	0.8894
23.571	0.9892	118.94	0.9537	249.24	0.9172		

 Table I. (Continued)

Table II. Experimental Pressures, Volume Ratios, $k = V_p/V_{0.1}$, and Densities^{*a*} at 0.1 MPa for 2-Butoxyethanol (1) + Water (2), $x_1 = 0.015965$

p (MPa)	k	p (MPa)	k	p (MPa)	k	p (MPa)	k
		T = 288	.15 K ; ρ(0.1	l)=997.18 k	$g \cdot m^{-3}$		
2.547	0.9989	27.61	0.9883	138.74	0.9501	273.22	0.9148
4.996	0.9978	38.54	0.9841	158.58	0.9442	298.93	0.9091
9.839	0.9957	58.55	0.9766	177.93	0.9388	324.37	0.9036
14.605	0.9937	78.47	0.9695	198.48	0.9333	348.67	0.8987
19.579	0.9916	98.55	0.9627	223.71	0.9268	366.62	0.8951
24.218	0.9897	119.25	0.9561	248.98	0.9205		
		T = 298	.14 K ; ρ(0.1	l) = 993.98 k	$g \cdot m^{-3}$		
2.547	0.9989	26.97	0.9887	138.58	0.9505	274.01	0.9153
4.996	0.9978	37.64	0.9846	158.24	0.9448	298.46	0.9098
9.519	0.9959	57.89	0.9770	178.10	0.9393	324.18	0.9043
14.585	0.9937	78.17	0.9699	198.24	0.9339	348.82	0.8993
19.955	0.9915	97.96	0.9632	224.32	0.9272	370.04	0.8950
23.522	0.9901	118.42	0.9567	248.48	0.9213		
		T = 313	3.14 K; ρ(0.)	l) = 987.48 k	$g \cdot m^{-3}$		
2.547	0.9988	28.03	0.9879	139.10	0.9498	273.84	0.9148
4.996	0.9977	38.61	0.9838	158.67	0.9441	299.38	0.9091
10.155	0.9954	58.65	0.9763	178.36	0.9386	322.68	0.9041
14.535	0.9935	78.66	0.9692	199.31	0.9331	348.33	0.8989
20.055	0.9912	98.93	0.9624	224.32	0.9267	374.21	0.8938
23.011	0.9900	119.14	0.9559	248.47	0.9208		

" Value at 313.14 K measured; values at other temperatures interpolated.

p (MPa)	k	p (MPa)	k	p (MPa)	k	p (MPa)	k			
$T = 323.14 \text{ K}; \ \rho(0.1) = 982.28 \text{ kg} \cdot \text{m}^{-3}$										
2.547	0.9988	27.58	0.9880	139.16	0.9493	273.34	0.9143			
4.996	0.9977	39.07	0.9834	158.62	0.9436	298.75	0.9085			
9.938	0.9955	58.76	0.9759	179.09	0.9378	323.95	0.9031			
15.454	0.9931	78.51	0.9689	198.96	0.9325	346.87	0.8985			
19.429	0.9914	98.56	0.9620	223.97	0.9261	374.55	0.8930			
23.547	0.9897	118.60	0.9556	249.13	0.9200					
		T = 338	.13 K; ρ(0.	1) = 973.47 k	$g \cdot m^{-3}$					
2.547	0.9988	28.24	0.9872	138.72	0.9480	273.74	0.9124			
4.996	0.9976	37.89	0.9832	158.76	0.9421	297.55	0.9070			
9.396	0.9955	57.90	0.9754	179.08	0.9363	322.84	0.9015			
14.535	0.9932	78.62	0.9678	198.64	0.9310	349.30	0.8960			
19.404	0.9910	98.43	0.9610	224.14	0.9244	373.67	0.8912			
23.646	0.9892	118.31	0.9544	248.75	0.9183					
		T = 348	.13 K; ρ(0.1	1) = 967.04 k	$g \cdot m^{-3}$					
2.547	0.9988	28.05	0.9873	139.14	0.9473	273.95	0.9113			
4.996	0.9976	38.76	0.9829	159.10	0.9412	298.77	0.9056			
9.568	0.9955	58.76	0.9750	179.23	0.9354	323.71	0.9003			
14.860	0.9931	78.84	0.9675	198.62	0.9301	346.31	0.8957			
19.554	0.9910	99.26	0.9603	223.70	0.9235	377.89	0.8894			
23.571	0.9892	118.94	0.9537	249.24	0.9172					

Table II. (Continued)

Table III. Experimental Pressures, Volume Ratios, $k = V_p/V_{0.1}$, and Densities^{*a*} at 0.1 MPa for 2-Butoxyethanol (1) + Water (2), $x_1 = 0.048263$

p (MPa)	k	p (MPa)	k	p (MPa)	k	p (MPa)	k
		T = 288	8.15 K; ρ(0.1	l) = 986.97 k	$sg \cdot m^{-3}$		
2.547	0.9988	27.94	0.9874	139.37	0.9487	273.67	0.9147
4.996	0.9976	38.31	0.9831	159.42	0.9430	298.50	0.9093
9.381	0.9955	58.53	0.9754	178.79	0.9377	321.35	0.9046
14.835	0.9930	78.57	0.9682	199.18	0.9324	335.24	0.9019
19.159	0.9911	98.09	0.9616	224.51	0.9261	348.96	0.8992
23.199	0.9894	118.85	0.9549	248.98	0.9203		

^a Value at 313.14 K measured; values at other temperatures interpolated.

p (MPa)	k	p (MPa)	k	p (MPa)	k	p (MPa)	k
		T = 298	.14 K; ρ(0.1) = 981.65 k	$g \cdot m^{-3}$		
2.547	0.9987	28.21	0.9871	138.58	0.9483	274.05	0.9137
4.996	0.9976	38.50	0.9828	158.56	0.9425	297.65	0.9086
9.145	0.9956	59.01	0.9748	178.92	0.9369	321.47	0.9036
14.364	0.9932	78.95	0.9676	199.03	0.9317	332.95	0.9013
19.424	0.9909	99.00	0.9607	224.14	0.9254	347.48	0.8985
23.701	0.9890	119.03	0.9543	249.47	0.9193		
		T = 313	5.14 K; ρ(0.1	l) = 972.92 k	$sg \cdot m^{-3}$		
2.547	0.9987	27.85	0.9868	138.15	0.9471	274.06	0.9119
4.996	0.9975	38.11	0.9824	158.58	0.9411	298.19	0.9065
9.410	0.9953	57.90	0.9744	178.33	0.9356	323.80	0.9012
15.000	0.9926	77.81	0.9670	199.01	0.9301	349.11	0.8961
19.735	0.9904	97.97	0.9600	223.80	0.9238	373.48	0.8913
23.776	0.9886	118.16	0.9533	248.79	0.9177		
		T = 322	$2.14 \text{ K}; \rho(0.1)$	l) = 966.92 k	$sg \cdot m^{-3}$		
2.547	0.9987	28.02	0.9863	138.24	0.9460	273.28	0.9105
4.996	0.9974	38.31	0.9818	159.10	0.9398	299.41	0.9047
9.317	0.9952	59.05	0.9733	178.82	0.9342	323.99	0.8995
15.202	0.9923	78.76	0.9659	199.32	0.9286	346.57	0.8950
19.649	0.9902	96.71	0.9595	224.55	0.9221	379.42	0.8885
23.666	0.9883	117.07	0.9527	249.85	0.9160		

Table III. (Continued)

Table IV. Experimental Pressures, Volume Ratios, $k = V_p/V_{0.1}$, and Densities^{*a*} at 0.1 MPa for 2-Butoxyethanol (1) + Water (2), $x_1 = 0.17484$

p (MPa)	k	p (MPa)	k	p (MPa)	k	p (MPa)	k
		T = 288	$8.15 \text{ K}; \rho(0.1)$) = 957.48 k	$g \cdot m^{-3}$		
2.547	0.9986	28.68	0.9855	138.92	0.9449	274.16	0.9104
4.996	0.9973	38.65	0.9810	158.79	0.9391	299.23	0.9051
9.716	0.9948	59.37	0.9723	179.85	0.9332	323.87	0.9001
14.727	0.9922	78.93	0.9649	199.99	0.9279	347.22	0.8955
19.564	0.9898	99.44	0.9576	225.23	0.9217	367.62	0.8917
23.726	0.9878	119.31	0.9510	249.55	0.9159		

^{*a*} Value at 313.14 K measured; values at other temperatures except 353.13 K interpolated. Value at 353.13 K extrapolated from $\rho(0.1)$ at lower temperatures.

Table IV. (Continued)

p (MPa)	k	p (MPa)	k	p (MPa)	k	p (MPa)	k
		T = 298	3.14 K; ρ(0.2	1) = 950.36 k	$xg \cdot m^{-3}$		
2 547	0 9986	28.63	0.9850	138 74	0 94 34	275 32	0 9079
4.996	0.9972	39.48	0.9799	159.22	0.9372	299.53	0.9027
9677	0.9946	59.22	0.9714	179.07	0.9316	324 23	0.8976
14 725	0.9920	79.08	0.9636	199.85	0.9260	347 53	0.8930
19 471	0.9895	99.27	0.9563	224 80	0.9197	372.99	0.8883
23.969	0.9873	118.81	0.9497	250.00	0.9137	5,2.77	0.0005
		T = 313	8.14 K; ρ(0.1	1) = 939.14 k	$sg \cdot m^{-3}$		
2 547	0 9985	29.29	0 9837	139.67	0 9401	275 35	0.9039
4.996	0.9970	39.74	0.9785	160.08	0.9338	301.17	0.8983
9 660	0.9943	59.72	0.9695	179.62	0.9281	324.93	0.8933
14 905	0.9913	79.52	0.9613	200.05	0.9225	346.91	0.8889
19 979	0.9885	99.98	0.9536	225.75	0.9158	371.87	0.8841
24.416	0.9862	120.02	0.9466	250.74	0.9097	571.07	0.0041
		T = 323	$0.14 \text{ K}; \rho(0.1)$	l) = 930.96 k	$g \cdot m^{-3}$		
2.547	0.9984	28.07	0.9835	139.65	0.9380	273.59	0.9015
4.996	0.9968	39.44	0.9777	159.54	0.9317	299.79	0.8956
9.808	0.9939	59.44	0.9683	178.87	0.9259	324.64	0.8903
14.610	0.9910	78.49	0.9602	199.08	0.9202	347.17	0.8857
20.104	0.9879	99.24	0.9521	224.38	0.9134	371.39	0.8810
23.746	0.9859	119.53	0.9448	249.97	0.9070		
		T = 338	.13 Κ ; ρ(0.1	l)=918.81 k	$g \cdot m^{-3}$		
2 547	0.9982	28.83	0.9819	139 14	0.9346	274 69	0 8966
4 996	0.9966	39.65	0.9760	159.48	0.9279	300.24	0.8907
10 165	0.9932	59.17	0.9663	179 35	0.9218	324 73	0.8854
15 144	0.9900	79.08	0.9574	199.29	0.9160	347.98	0.8805
20 604	0.9967	99.43	0.9491	225.09	0.9089	371.96	0.8758
24.223	0.9845	119.38	0.9416	249.24	0.9027	571.90	0.0750
		T = 353	.13 K; ρ(0.1	l) = 906.36 k	$g \cdot m^{-3}$		
2 547	0 9981	30.17	0.9800	139.28	0.9312	275.00	0.8917
2.347 2.996	0.9963	39.04	0.9749	159.20	0.9744	300 10	0.8859
9.710 0.712	0.2203	58.84	0.9749	170 30	0.9244	325 43	0.8803
14 620	0.2250	78.67	0.90-19	100.80	0.0116	360.16	0.0000
19.020	0.2077	08 17	0.9352	177.07 771 70	0.9110	385 66	0.8731
23 620	0.2007	110.47	0.9407	227.29 748 Q7	0.2047	565.00	0.0002
23.037	0.7037	119.20	0.2000	270.72	0.0702		

p (MPa)	k	p (MPa)	k	p (MPa)	k	p (MPa)	k
		T = 288	.15 K; ρ(0.	l) = 925.01 k	$g \cdot m^{-3}$		
2.547	0.9984	26.59	0.9844	136.07	0.9389	273.03	0.9020
4.996	0.9969	37.47	0.9787	156.69	0.9324	296.73	0.8967
8.948	0.9944	57.25	0.9692	176.48	0.9265	318.89	0.8921
14.777	0.9910	76.99	0.9606	197.25	0.9206	338.33	0.8882
19.112	0.9885	96.86	0.9528	221.66	0.9142	350.10	0.8859
23.804	0.9859	116.64	0.9455	247.64	0.9078		
		T = 298	.14 K ; ρ(0.	l) = 917.07 k	$g \cdot m^{-3}$		
2.547	0.9983	26.73	0.9834	136.35	0.9363	271.14	0.8989
4.996	0.9967	36.03	0.9783	156.73	0.9297	294.34	0.8937
9.612	0.9937	56.82	0.9678	176.14	0.9237	320.00	0.8883
14.692	0.9905	76.28	0.9590	196.51	0.9179	343.17	0.8836
20.125	0.9873	95.88	0.9509	220.50	0.9114	357.39	0.8808
24.138	0.9849	117.37	0.9429	245.92	0.9049		
		T = 313	.14 K ; ρ(0.)	1) = 904.65 k	$g \cdot m^{-3}$		
2.547	0.9982	38.63	0.9758	158.05	0.9254	295.19	0.8883
4.996	0.9965	58.53	0.9653	177.00	0.9194	320.19	0.8828
9.701	0.9934	78.82	0.9557	196.84	0.9134	346.40	0.8774
14.469	0.9903	97.61	0.9476	222.47	0.9062	367.26	0.8732
19.224	0.9872	118.05	0.9395	247.47	0.8996		
24.092	0.9843	138.24	0.9322	271.89	0.8936		
		T = 323	.14 K; ρ(0.	1) = 895.70 k	$g \cdot m^{-3}$		
2 547	0.9980	29.56	0 9792	135.87	0.9293	271 39	0 8897
4.996	0.9961	37.48	0.9743	155.37	0.9225	294.68	0.8842
9.796	0.9926	56.09	0.9637	177.44	0.9154	319 51	0.8787
14.278	0.9894	75.73	0.9539	197.05	0.9095	341.87	0.8739
19.756	0.9856	95.67	0.9449	222.53	0.9023	355.17	0.8712
24.335	0.9825	115.81	0.9367	247.29	0.8957		
		T = 338	.13 K; ρ(0.	l) = 882.55 k	$g \cdot m^{-3}$		
2 517	0 9978	30.05	0 9772	136.24	0.0248	270 20	0.8840
4 996	0.9958	37.41	0.9774	150.24	0.9240	210.59	0.8777
9.986	0.9918	56 52	0.9610	177.63	0.9102	321 25	0.8720
14 568	0.9882	77 14	0.9502	197.05	0.9041	347.08	0.8664
19 734	0 9844	96.87	0.9302	222 31	0.2041	372.21	0.8613
24 230	0.9812	116 72	0.9324	246 52	0.8901	314.41	0.0010
41.430	0.2012	110.72	0,7524	2-10.32	0.0701		

Table V. Experimental Pressures, Volume Ratios, $k = V_p/V_{0.1}$, and Densities^{*a*} at 0.1 MPa for 2-Butoxyethanol (1) + Water (2), $x_1 = 0.50247$

" Value at 288.15 K measured; values at other temperatures interpolated.

p (MPa)	k	p (MPa)	k	p (MPa)	k	p (MPa)	k
		T = 348	$8.13 \text{ K}; \rho(0.1)$	l) = 873.55 k	$\mathbf{g} \cdot \mathbf{m}^{-3}$		
2.547	0.9977	25.59	0.9793	137.14	0.9215	270.27	0.8800
4.996	0.9956	39.78	0.9695	156.15	0.9143	295.80	0.8738
9.489	0.9918	56.37	0.9594	176.32	0.9072	320.22	0.8682
14.596	0.9876	77.04	0.9482	195.55	0.9010	349.32	0.8619
19.823	0.9835	96.58	0.9387	222.82	0.8927	376.44	0.8565
23.608	0.9807	116.10	0.9300	246.71	0.8861		

Table V. (Continued)

Table VI. Experimental Pressures, Volume Ratios, $k = V_p/V_{0,1}$, and Densities^{*a*} at 0.1 MPa for 2-Butoxyethanol (1) + Water (2), $x_1 = 0.75398$

p (MPa)	k	p (MPa)	k	p (MPa)	k	p (MPa)	k			
$T = 288.15 \text{ K}; \ \rho(0.1) = 912.45 \text{ kg} \cdot \text{m}^{-3}$										
2.547	0.9983	27.14	0.9832	136.14	0.9360	272.40	0.8982			
4.996	0.9967	36.97	0.9777	156.60	0.9293	296.77	0.8928			
10.046	0.9934	56.81	0.9677	176.16	0.9233	319.01	0.8881			
14.597	0.9906	76.64	0.9587	196.73	0.9174	332.61	0.8853			
19.642	0.9875	96.81	0.9503	221.04	0.9108	350.21	0.8818			
23.516	0.9853	116.67	0.9428	246.73	0.9043					
		T = 298	.14 K; ρ(0.1) = 904.40 k	$g \cdot m^{-3}$					
2.547	0.9982	27.38	0.9818	136.36	0.9328	271.13	0.8945			
4.996	0.9964	36.72	0.9764	156.81	0.9259	294.27	0.8892			
9.496	0.9933	56.38	0.9660	176.24	0.9198	319.54	0.8837			
14.657	0.9898	75.99	0.9567	196.62	0.9138	334.34	0.8807			
19.448	0.9867	95.82	0.9482	220.88	0.9071	349.47	0.8777			
24.074	0.9838	117.25	0.9398	246.34	0.9005					
		T = 313	.14 K ; ρ(0.1) = 891.91 k	$g \cdot m^{-3}$					
2.547	0.9980	26.74	0.9806	135.64	0.9286	272.45	0.8884			
4.996	0.9960	36.71	0.9743	155.48	0.9217	296.51	0.8828			
9.905	0.9923	56.42	0.9632	176.69	0.9147	318.35	0.8779			
14.617	0.9889	76.71	0.9530	196.78	0.9086	337.32	0.8739			
19.533	0.9854	95.84	0.9444	222.71	0.9012	347.92	0.8717			
23.881	0.9825	116.90	0.9357	247.69	0.8946					

^a Value at 288.15 K measured; values at other temperatures interpolated.

p (MPa)	k	p (MPa)	k	p (MPa)	k	p (MPa)	k				
	$T = 323.14$ K; $\rho(0.1) = 882.85$ kg \cdot m ⁻³										
2.547	0.9979	30.95	0.9768	137.18	0.9251	270.53	0.8851				
4.996	0.9959	37.12	0.9729	158.30	0.9175	296.62	0.8788				
9.404	0.9923	58.16	0.9605	176.52	0.9115	321.56	0.8732				
14.040	0.9888	77.80	0.9503	196.25	0.9053	347.22	0.8677				
19.746	0.9846	96.80	0.9415	221.55	0.8979	372.57	0.8626				
23.640	0.9818	117.40	0.9328	246.06	0.8913						
		T = 338	.13 K; ρ(0.1) = 869.72 k	g⋅m ⁻³						
2.547	0.9976	26.34	0.9780	137.19	0.9199	271.72	0.8782				
4.996	0.9954	37.57	0.9700	156.30	0.9128	296.75	0.8721				
9.546	0.9914	60.30	0.9559	176.78	0.9056	321.34	0.8664				
14.538	0.9872	76.28	0.9471	196.24	0.8993	350.70	0.8599				
19.647	0.9831	95.97	0.9374	221.33	0.8917	377.54	0.8545				
24.088	0.9797	115.83	0.9286	247.93	0.8843						
		T = 348	.13 K ; ρ(0.1) = 860.721	$cg \cdot m^{-3}$						
2.547	0.9975	27.03	0.9763	136.16	0.9169	270.78	0.8739				
4.996	0.9951	40.53	0.9665	158.27	0.9084	295.23	0.8678				
9.770	0.9907	57.62	0.9555	178.26	0.9012	322.95	0.8615				
14.577	0.9864	77.54	0.9442	197.16	0.8950	348.37	0.8560				
19.612	0.9822	96.56	0.9345	221.73	0.8874	371.92	0.8512				
24.002	0.9786	117.27	0.9249	247.67	0.8801						

Table VI. (Continued)

compositions $x_1 = 0.01596$ and 0.17484 lie just outside opposite sides of the phase boundary at 0.1 MPa for all of the temperatures at which measurements were made. The volume ratios are expected to have an accuracy of ± 0.03 -0.05% for pressures above 50 MPa, increasing to $\pm 0.1\%$ at pressures near 0.1 MPa. The k can be represented within the experimental accuracy by either the modified Tait equation, Eq. (1), or the secant bulk modulus (SBM), $K [= (p - p_{0.1})/(1 - k)]$ represented by thirdorder equations, with the pressure p in MPa:

$$1 - k = C \log[(B + p)/(B + p_{0.1})]$$
(1)

$$K = a_0 + a_1 p + a_2 p^2 + a_3 p^3 \tag{2}$$

for which the coefficients are given in Table VII together with the B and C for Eq. (1). Equation (1) is particularly suitable for extrapolation of the k, while Eq. (2) is the more accurate representation of them.

Properties of Mixtures of 2-n-Butoxyethanol with Water

 $\begin{array}{cc} -a_2 & a_3 \\ (\text{GPa}^{-1}) & (\text{GPa}^{-2}) \end{array}$ 10^{2} 10^{2} B a_0 T (K) (MPa) $\langle \Delta k/k \rangle$ (MPa) С a_1 $\langle \Delta k/k \rangle$ $x_1 = 0.006934$ 278.15 2116.1 3.5587 1.1533 0.864 0.001 275.28 0.3024 0.004 288.15 2204.5 3.4670 0.6938 0.097 0.000 288.86 0.3049 0.004 298.14 2266.8 3.3604 0.2430 -0.7180.001 301.41 0.3095 0.003 313.14 2282.2 3.4440 0.3069 0.1613 -1.4340.002 301.78 0.001 323.14 2232.3 4.2308 4.7340 6.693 0.004 295.95 0.3033 0.004 338.13 2181.5 4.0366 2.8051 2.754 0.001 280.76 0.2957 0.004 $x_1 = 0.015965$ 2229.8 10.041 288.15 4.842 7.4326 0.010 298.41 0.3017 0.008 298.14 2261.5 4.68 6.4865 8.419 0.008 303.38 0.3032 0.007 313.14 2172.7 5.366 8.7853 11.065 0.011 285.86 0.2921 0.014 0.009 279.63 0.2898 0.013 323.14 2155.7 5.126 7.4863 9.126 338.13 2053.9 5.53 9.0905 11.319 0.011 262.66 0.2829 0.017 348.13 2068.4 4.944 7.0157 9.078 0.010 260.75 0.2845 0.009 $x_1 = 0.048263$ 288.15 2037.5 6.203 11.0725 14.483 0.010 237.56 0.2565 0.019 298.14 2014.9 5.942 9.5419 11.895 0.007 233.51 0.2562 0.019 313.14 1940.3 5.959 9.0921 10.464 0.009 225.41 0.2555 0.023 322.15 1879 6.063 9.5401 11.079 0.010 217.18 0.2534 0.024 $x_1 = 0.174838$ 288.15 1804.49 6.1338 8.0790 8.665 0.006 185.44 0.2277 0.023 298.14 1742.70 5.9582 7.392 0.004 177.87 0.2271 0.023 7.2421 6.9369 313.14 1626.56 5.8914 6.842 0.003 164.88 0.2256 0.026 323.14 1541.15 5.9886 7.5225 7.734 0.005 155.89 0.2243 0.028 5.9228 7.3022 0.005 0.2229 0.031 1425.89 7.345 143.31 338.13 353.13 1335.83 5.8405 7.6226 8.276 0.010 134.78 0.2244 0.026 $x_1 = 0.50247$ 0.014 288.15 1556.68 5.5222 4.9581 4.363 0.002 147.72 0.2160 1474.42 0.2154 298.14 5.3738 4.1441 2.888 0.004 139.11 0.017 313.14 1416.53 4.8229 2.6844 1.416 0.004 136.10 0.2232 0.005 323.14 1270.42 5.1641 3.0279 0.708 0.008 117.67 0.2128 0.025 5.2998 4.743 109.96 0.2157 0.021 338.13 1158.81 5.4158 0.005 104.45 348.13 1101.39 5.3720 5.7321 5.885 0.007 0.2165 0.015 $x_1 = 0.75398$ 1474.78 0.011 288.15 3.5763 2.265 0.004 138.12 0.2154 5.2201 298.14 1359.65 5.5712 5.5040 5.226 127.64 0.2134 0.003 0.016 313.14 1233.09 5.6078 5.8030 5.486 0.003 115.60 0.2124 0.021 1176.90 5.3344 4.6528 3.722 0.003 110.12 0.2138 0.019 323.14 338.13 1060.24 5.3739 5.1529 4.467 0.005 99.03 0.2129 0.023 0.017 6.7450 348.13 7.467 0.012 93.63 0.2137 994.24 5.5315

Table VII.Coefficients of the SBM Equation (1) and Tait Equation (2) for 2-Butoxyethanol(1) + Water (2)

<i>x</i> ₁	$\rho(0.1)$	<i>x</i> ₁	<i>ρ</i> (0.1)	<i>x</i> ₁	ρ(0.1)	<i>x</i> ₁	<i>ρ</i> (0.1)
			T = 28	8.15 K			
0 0.001029 0.004977 0.009685	999.099 998.894 998.276 997.764	0.089473 0.181828 0.253201 0.301138	974.891 956.366 946.504 941.169	0.547147 0.593933 0.647469 0.701593	922.300 919.769 917.090 914.625	0.981108 0.983576 0.987263 0.991718	904.930 904.874 904.775 904.603
0.014887 0.019844 0.024946 0.030290 0.049564	997.293 996.576 995.110 993.246 986.538	0.387088 0.398020 0.429165 0.451091 0.506773	934.964 932.369 930.061 928.405 924.714	0.746787 0.799255 0.845623 0.888320 0.950764	912.734 910.711 909.081 907.693 905.795	0.999082 1	904.316 904.423 904.412
			T = 29	8.14 K			
0 0.009580 0.016045 0.019560	997.044 995.173 993.963 992.874	0.046803 0.048806 0.055023 0.168653	982.183 981.449 979.246 951.406	0.177416 0.500554 0.546072 0.447247	949.924 917.188 914.416 920.803	0.690536 0.739515 0.790745 1	907.086 904.988 902.984 896.289
			T = 31	3.14 K			
0 0.000867 0.005138 0.009684 0.010581 0.015712 0.016140	992.215 991.956 990.763 989.560 989.331 987.588 987.406	0.016434 0.019012 0.029864 0.030015 0.038631 0.050930	987.276 986.096 980.916 980.846 976.943 971.809	0.060760 0.099029 0.109725 0.123603 0.156050 0.162370	968.050 955.935 953.042 949.615 942.648 941.413	0.181133 0.195990 0.398337 0.597712 0.814771 1	937.994 935.490 912.258 899.069 889.602 883.775
			T = 32	2.14 K			
0 0.004905 0.010066 0.015785 0.020219 0.050531	988.484 986.869 985.213 982.863 980.584 965.990	0.100194 0.153267 0.175431 0.199358 0.298737 0.380309	948.861 936.012 931.675 927.494 913.974 905.843	0.398706 0.450261 0.498866 0.544753 0.695576	904.264 900.219 896.828 893.961 886.226	0.743263 0.799071 0.901330 0.949541 1	884.186 882.019 878.535 877.059 875.649
			T = 33	8.13 K			
0 0.009910 0.015785 0.049652 0.049652 0.170700 0.200314 0.251227	980.554 976.546 973.558 969.549 969.555 919.613 914.166 906.385	$\begin{array}{c} 0.251227\\ 0.251227\\ 0.251227\\ 0.444835\\ 0.444835\\ 0.496084\\ 0.544611\\ 0.693380\\ \end{array}$	906.199 906.214 906.188 886.627 886.646 882.972 879.912 872.267	0.69338 0.739574 0.796714 0.900325 0.900325 0.949831 1	872.279 870.310 868.076 864.560 864.576 863.054 861.658	0 0.003099 0.007016 0.010040 0.014057 0.015959 0.019678 1	980.554 979.311 977.752 976.494 974.542 973.476 970.870 861.751
			T = 34	8.13 K			
0 0.010037	974.848 970.322	0.015827 0.196789	967.125 906.378	0.499217 0.752993	873.765 860.760	1	852.730

Table VIII. Density, $\rho(0.1)$ (kg · m⁻³), for 2-Butoxyethanol (1) + Water (2) at 0.1 MPa^{*a*}

^a Density of water adjusted for local isotopic composition.

3.2. Densities at 0.1 MPa

The densities of the standard solutions at 0.1 MPa used for determination of the composition of the volumometer samples are given in Table VIII. These measurements were made over a sufficient range of concentrations to enable an accurate comparison with literature data. The results were compared with the literature data by using the densities to obtain excess molar volumes, $V_{\rm m}^{\rm E}$. These were expressed as $V_{\rm m}^{\rm E}/[x_1(1-x_1)]$ and plotted against $(1-2x_1)$. Figure 1 shows the present data for $V_{\rm m}^{\rm E}/[x_1(1-x_1)]$ at the six lowest compositions, excluding $x_1 = 0$ (see Table VIII), at 298.14 K, with those from Refs. 9, 11, and 12. Figure 2 extends the comparison at 298.14 K to the higher compositions for the same references as in Fig. 1 except Ref. 9, where the data are not available. The values from Roux et al. [10] were not included in the figures because they are mostly in close coincidence with either the present results or those of the other references. The comparisons were also made at 288.15 K with the results of Ref. 9 and at 313.14 K with those of Ref. 10. The agreement with the present data at all temperatures was generally within the combined experimental uncertainties, although it is evident from Fig. 1 that there is some scatter in the values of Koga et al. [9], and at the lower compositions their data lie above those from the other sources. At those compositions the data of Roux et al. [10] (not shown) are closer to those of the other data. The densities of the volumometer samples at 0.1 MPa, $\rho_{0.1}$, were determined at the temperatures identified in Tables I-VI with a precision of $2 \times 10^{-6} \rho_{0.1}$ and an estimated accuracy of $2 \times 10^{-5} \rho_{0.1}$. These were

Fig. 1. Excess molar volumes for 2-*n*-butoxyethanol (1) + water at 0.1 MPa and 298.14 K for mole fractions $x_1 \le 0.055$. (\bigcirc) This work; (\triangle) Ref. 11; (\Box) Ref. 12; (+) Ref. 9.

Fig. 2. Excess molar volumes for 2-*n*-butoxyethanol (1) + water at 0.1 MPa and 298.14 K for mole fractions $x_1 \ge 0.055$. Symbols as in the legend to Fig. 1.

used to determine the corresponding x_1 from fits of a Redlich-Kister type for the standard solutions in Table VIII, although a cubic spline was used for the fit because the usual polynomial in $(1-2x_1)$ did not provide a good fit. Those x_1 were used to calculate the densities given in Tables I-VI at the other experimental temperatures by using a cubic spline fit of a Redlich-Kister type for the $V_m^E/[x_1(1-x_1)]$ at those temperatures. At 353.13 K, for $x_1 = 0.17484$ the density was estimated from an extrapolation of a cubic fit of the densities at the lower temperatures. A similar procedure was used to estimate the density at 278.15 K for $x_1 = 0.006934$. The compositions are estimated to have an accuracy of $0.0001 \cdot x_1$.

3.3. Isothermal Compressibilities

Isothermal compressibilities, κ_T , given in Table IX, were calculated from the coefficients in Table VII for Eq. (2) using the relationship

$$\kappa_T = -\left[\frac{1}{(p-K)}\right]\left[1 - \frac{(p/K)(\partial K/\partial p)_T}{(p-K)}\right]$$
(3)

They have a probable uncertainty of $\pm 1-2\%$. Koga et al. [13] calculated κ_T as 0.1 MPa and 298.14 K from speed-of-sound and other measurements; their corresponding value is within the lower bound of our probable uncertainty at $x_1 = 0.006934$ but smaller by an amount exceeding the combined maximum uncertainties at $x_1 = 0.01596$. The isobaric κ_T for $x_1 = 0.007$ and 0.01596 initially are less than, and have a similar temperature dependence

					p (MPa	.)			
	0.1	20	40	60	100	150	200	250	300
			(8	a) $x_1 = 0.$	0069337				
				T = 278	.15 K				
$10^4 \kappa_T$	4.72	4.47	4.23	4.02	3.66	3.28	2.98	2.72	2.50
V _m	18.719	18.549	18.388	18.237	17.959	17.651	17.377	17.132	16.910
10 ³ α	0.120	0.157	0.189	0.217	0.264	0.311	0.347	0.374	0.393
$-\Delta C_p$	0.0	0.8	1.5	2.1	3.1	4.1	4.7	5.2	5.5
$\langle (\Delta V/V)^2 \rangle$	0.0584	0.0557	0.0532	0.0510	0.0471	0.0430	0.0396	0.0367	0.0342
				T = 288	.15 K				
$10^4 \kappa_T$	4.53	4.30	4.09	3.90	3.56	3.20	2.91	2.67	2.46
V _m	18.746	18.582	18.426	18.280	18.010	17.709	17.441	17.199	16.981
$10^{3}\alpha$	0.203	0.229	0.252	0.272	0.307	0.342	0.369	0.389	0.404
$-\Delta C_p$	0.0	0.9	1.6	2.2	3.3	4.2	4.9	5.4	5.8
$\langle (\Delta V/V)^2 \rangle$	0.0580	0.0555	0.0532	0.0511	0.0473	0.0433	0.0400	0.0371	0.0347
				T = 298	.14 K				
$10^4 \kappa_T$	4.41	4.20	4.00	3.82	3.49	3.15	2.87	2.64	2.45
V _m	18.791	18.631	18.479	18.335	18.069	17.772	17.507	17.267	17.049
$10^{3}\alpha$	0.286	0.300	0.314	0.327	0.350	0.374	0.391	0.404	0.415
$-\Delta C_p$	0.0	0.9	1.7	2.3	3.4	4.4	5.2	5.7	6.0
$\langle (\Delta V/V)^2 \rangle$	0.0582	0.0558	0.0537	0.0516	0.0479	0.0440	0.0407	0.0379	0.0357
				T = 313	.14 K				
$10^4 \kappa_T$	4.38	4.16	3.96	3.78	3.45	3.12	2.84	2.63	2.46
V _m	18.893	18.733	18.581	18.438	18.173	17.878	17.614	17.375	17.156
10 ³ α	0.410	0.408	0.409	0.410	0.415	0.421	0.425	0.428	0.431
$-\Delta C_p$	0.0	1.0	1.8	2.5	3.6	4.7	5.5	6.1	6.4
$\langle (\Delta V/V)^2 \rangle$	0.0604	0.0579	0.0555	0.0534	0.0495	0.0454	0.0420	0.0394	0.0373
				T = 323.	14 K				
$10^4 \kappa_T$	4.48	4.20	3.97	3.77	3.45	3.13	2.87	2.63	2.39
V _m	18.979	18.816	18.663	18.519	18.254	17.957	17.690	17.449	17.231
10 ³ α	0.492	0.480	0.472	0.466	0.458	0.452	0.447	0.443	0.442
$-\Delta C_p$	0.0	1.0	1.9	5.6	3.8	4.9	5.8	6.3	6.7
$\langle (\Delta V/V)^2 \rangle$	0.0634	0.0600	0.0572	0.0547	0.0507	0.0468	0.0436	0.0405	0.0372
				T = 338.	13 K				
$10^4 \kappa_T$	4.58	4.31	4.07	3.85	3.50	3.15	2.88	2.64	2.44
V _m	19.134	18.966	18.808	18.659	18.387	18.085	17.815	17.571	17.349
10 ³ α	0.616	0.588	0.566	0.549	0.523	0.499	0.481	0.466	0.458
$-\Delta C_p$	0.0	1.1	2.0	2.8	4.1	5.3	6.2	6.8	7.2
$\langle (\Delta V/V)^2 \rangle$	0.0673	0.0638	0.0608	0.0581	0.0535	0.0490	0.0454	0.0423	0.0395

Table IX. Isothermal Compressibilities $(\kappa_T; MPa^{-1})$, Molar Volumes $(V_m; cm^3 \cdot mol^{-1})$, Isobaric Expansivities $(\alpha; K^{-1})$, Volume Fluctuations $(\langle (\Delta V/V)^2 \rangle)$, and Change in Molar Heat Capacity $(\Delta C_p; J \cdot mol^{-1} \cdot K^{-1})$ in 2-Butoxyethanol (1) + Water (2)

	p (MPa)								
	0.1	20	40	60	100	150	200	250	300
			(b) $x_1 = 0$.015965				
				T = 288	.15 K				
$10^4 \kappa_T$	4.48	4.17	3.92	3.70	3.38	3.09	2.85	2.64	2.40
V.,	19.669	19.501	19.344	19.197	18.928	18.625	18.350	18.100	17.873
$10^3 \alpha$	0.316	0.309	0.307	0.309	0.318	0.333	0.348	0.358	0.363
$-\Delta C_{p}$	0.0	0.8	1.5	2.2	3.4	4.7	5.7	6.6	7.4
$\langle (\Delta \dot{V/V})^2 \rangle$	0.0546	0.0512	0.0485	0.0462	0.0428	0.0397	0.0373	0.0349	0.0322
				T = 298	.14 K				
$10^4 \kappa_T$	4.42	4.13	3.88	3.68	3.36	3.06	2.83	2.62	2.40
V _m	19.732	19.565	19.409	19.263	18.995	18.693	18.420	18.171	17.944
10 ³ α	0.382	0.373	0.369	0.367	0.369	0.376	0.383	0.389	0.390
$-\Delta C_p$	0.0	0.8	1.6	2.3	3.5	4.9	6.0	6.9	7.7
$\langle (\Delta V/V)^2 \rangle$	0.0555	0.0523	0.0496	0.0473	0.0438	0.0406	0.0381	0.0357	0.0332
				T = 313	.14 K				
$0^4 \kappa_T$	4.60	4.24	3.94	3.71	3.36	3.05	2.83	2.62	2.40
· .	19.862	19.689	19.528	19.380	19.109	18.806	18.531	18.281	18.052
.0 ³ α	0.482	0.470	0.461	0.454	0.445	0.439	0.436	0.434	0.431
$-\Delta C_{p}$	0.0	0.9	1.7	2.4	3.8	5.2	6.4	7.4	8.2
$\langle (\Delta V/V)^2 \rangle$	0.0609	0.0566	0.0531	0.0503	0.0462	0.0427	0.0401	0.0377	0.0350
				T = 323	.14 K				
$0^4 \kappa_T$	4.64	4.28	3.99	3.76	3.40	3.08	2.84	2.63	2.41
7 m	19.968	19.792	19.629	19.478	19.202	18.895	18.618	18.365	18.135
$0^{3}\alpha$	0.548	0.534	0.522	0.512	0.496	0.482	0.471	0.464	0.459
$-\Delta C_p$	0.0	0.9	1.8	2.5	4.0	5.5	6.7	7.7	8.6
$(\Delta \dot{V/V})^2$	0.0624	0.0581	0.0547	0.0518	0.0475	0.0438	0.0409	0.0384	0.0357
				T = 338	.13 K				
$0^4 \kappa_T$	4.87	4.45	4.12	3.85	3.46	3.13	2.88	2.67	2.44
V	20.148	19.962	19.793	19.636	19.352	19.037	18.753	18.495	18.260
$0^{3}\alpha$	0.648	0.630	0.614	0.599	0.573	0.545	0.524	0.509	0.500
$-\Delta C_n$	0.0	1.0	1.9	2.7	4.3	5.9	7.2	8.3	9.2
$\langle (\Delta V/V)^2 \rangle$	0.0679	0.0626	0.0585	0.0551	0.0503	0.0462	0.0432	0.0405	0.0375
				T = 348	.13 K				
$10^4 \kappa_T$	4.83	4.46	4.16	3.91	3.53	3.19	2.92	2.68	2.44
V	20.282	20.095	19.923	19.763	19.472	19.149	18.859	18.597	18.360
$10^{3}\alpha$	0.714	0.695	0.676	0.657	0.624	0.588	0.559	0.539	0.527
AC.	0.0	1.0	2.0	2.9	4.5	6.1	7.5	8.7	9.7
p	0.0700	0.0(12	0.0604	0.0572	0.0525	0.0492	0.0449	0.0417	0.020

Table IX.(Continued)

Table IX.	(Continued)
-----------	-------------

					p (MPa)			
	0.1	20	40	60	100	150	200	250	300
			(c) $x_1 = 0$	0.048263				
				T = 288	.15 K				
$\frac{10^{4}\kappa_{T}}{V_{m}}$ $\frac{10^{3}\alpha}{-\Delta C_{p}}$ $(\Delta V/V)^{2}$	4.91 23.150 0.502 0.0	4.43 22.936 0.494 0.8 0.0463	4.06 22.743 0.484 1.4	3.77 22.566 0.474 2.0	3.36 22.247 0.457 3.1 0.0362	3.02 21.896 0.444 4.3	2.77 21.582 0.438 5.3	2.54 21.297 0.435 6.1	2.29 21.042 0.424 6.8
$\langle (\Delta V / V) \rangle$	0.0508	0.0405	0.0420	0.0401	0.0502	0.0551	0.0507	0.0280	0.0200
				T = 298	.14 K				
$ \begin{array}{c} 10^{4}\kappa_{T} \\ V_{m} \\ 10^{3}\alpha \\ -\Delta C_{p} \\ \langle (\Delta V/V)^{2} \rangle \end{array} $	4.96 23.275 0.561 0.0 0.0528	4.49 23.058 0.545 0.8 0.0483	4.12 22.861 0.530 1.5 0.0447	3.83 22.680 0.516 2.1 0.0419	3.41 22.355 0.495 3.2 0.0378	3.05 21.998 0.478 4.5 0.0343	2.78 21.681 0.466 5.6 0.0318	2.55 21.393 0.457 6.4 0.0296	2.31 21.135 0.444 7.1 0.0271
				T = 313	.14 K				
$ \frac{10^{4}\kappa_{T}}{V_{m}} \\ \frac{10^{3}\alpha}{-\Delta C_{p}} \\ \langle (\Delta V/V)^{2} \rangle $	5.15 23.484 0.649 0.0 0.0571	4.64 23.257 0.620 0.9 0.0520	4.25 23.051 0.597 1.6 0.0480	3.93 22.864 0.580 2.3 0.0448	3.47 22.529 0.553 3.5 0.0402	3.09 22.163 0.529 4.8 0.0364	2.82 21.838 0.509 6.0 0.0337	2.60 21.545 0.491 6.9 0.0314	2.38 21.278 0.472 7.6 0.0291
				T = 322	.15 K				
$ \begin{array}{l} 10^{4}\kappa_{T} \\ V_{m} \\ 10^{3}\alpha \\ -\Delta C_{p} \\ \langle (\Delta V/V)^{2} \rangle \end{array} $	5.32 23.630 0.701 0.0 0.0603	4.77 23.394 0.665 0.9 0.0546	4.35 23.183 0.638 1.7 0.0502	4.01 22.990 0.618 2.4 0.0468	3.53 22.647 0.588 3.6 0.0418	3.14 22.274 0.560 5.0 0.0378	2.86 21.942 0.535 6.2 0.0350	2.63 21.643 0.511 7.2 0.0326	2.40 21.372 0.490 8.0 0.0301
			6	n=.x (h	174838				
			(T = 288	.15 K				

$10^4 \kappa_T$	5.54	4.93	4.46	4.09	3.55	3.09	2.78	2.53	2.30
V _m	37.103	36.719	36.377	36.067	35.523	34.941	34.433	33.980	33.573
10 ³ α	0.75	0.71	0.67	0.64	0.60	0.56	0.53	0.51	0.49
$-\Delta C_p$	0.0	0.8	1.4	2.0	3.0	4.1	5.0	5.8	6.4
$\langle (\varDelta V/V)^2 \rangle$	0.0358	0.0322	0.0294	0.0272	0.0239	0.0212	0.0193	0.0178	0.0164

			1 21	ole IA. (Continue	<i>a</i>)			
					p (MPa)			
	0.1	20	40	60	100	150	200	250	300
			(d) $x_1 = 0$.174838				
				T = 298	.14 K				
$ \begin{array}{l} 10^{4}\kappa_{T} \\ V_{m} \\ 10^{3}\alpha \\ -\Delta C_{p} \\ \langle (\Delta V/V)^{2} \rangle \end{array} $	5.73 37.381 0.78 0.0 0.0380	5.11 36.981 0.73 0.8 0.0342	4.61 36.624 0.69 1.5 0.0312	4.22 36.303 0.66 2.1 0.0288	3.64 35.739 0.62 3.2 0.0253	3.16 35.139 0.57 4.4 0.0223	2.83 34.618 0.54 5.3 0.0202	2.57 34.155 0.52 6.1 0.0186	2.33 33.740 0.50 6.7 0.0171
				T = 313	.14 K				
$ \frac{10^{4}\kappa_{T}}{V_{m}} \\ \frac{10^{3}\alpha}{-\Delta C_{p}} \\ \langle (\Delta V/V)^{2} \rangle $	6.14 37.827 0.82 0.0 0.0423	5.43 37.395 0.77 0.9 0.0378	4.88 37.012 0.73 1.6 0.0343	4.44 36.670 0.70 2.3 0.0315	3.81 36.073 0.65 3.4 0.0275	3.28 35.443 0.60 4.7 0.0241	2.92 34.899 0.56 5.7 0.0218	2.64 34.419 0.53 6.5 0.0200	2.40 33.988 0.51 7.2 0.0184
				T = 323	.14 K				
$ \frac{10^{4}\kappa_{T}}{V_{m}} \\ \frac{10^{3}\alpha}{-\Delta C_{p}} \\ \langle (\Delta V/V)^{2} \rangle $	6.48 38.159 0.85 0.0 0.0457	5.69 37.702 0.80 0.9 0.0405	5.07 37.299 0.76 1.7 0.0365	4.60 36.941 0.72 2.4 0.0334	3.92 36.321 0.67 3.6 0.0290	3.36 35.669 0.62 4.9 0.0253	2.99 35.109 0.58 6.0 0.0229	2.70 34.614 0.54 6.9 0.0209	2.44 34.172 0.52 7.6 0.0192
				T = 338	.13 K				
$ \frac{10^{4}\kappa_{T}}{V_{m}} \\ \frac{10^{3}\alpha}{-\Delta C_{p}} \\ \langle (\Delta V/V)^{2} \rangle $	7.01 38.664 0.90 0.0 0.0510	6.09 38.165 0.84 1.0 0.0449	5.40 37.730 0.79 1.8 0.0402	4.86 37.346 0.76 2.6 0.0366	4.10 36.686 0.70 3.9 0.0314	3.50 36.000 0.64 5.3 0.0273	3.09 35.414 0.60 6.5 0.0245	2.78 34.898 0.56 7.4 0.0224	2.52 34.439 0.53 8.1 0.0205
				T = 353	.13 K				
$ \frac{10^{4}\kappa_{T}}{V_{m}} \\ \frac{10^{3}\alpha}{-\Delta C_{p}} \\ \langle (\Delta V/V)^{2} \rangle $	7.48 39.195 0.95 0.0 0.0560	6.46 38.657 0.88 1.1 0.0491	5.70 38.191 0.83 2.0 0.0438	5.12 37.781 0.79 2.8 0.0398	4.30 37.081 0.73 4.2 0.0341	3.66 36.355 0.67 5.7 0.0295	3.22 35.737 0.62 7.0 0.0265	2.89 35.196 0.58 7.9 0.0241	2.58 34.719 0.55 8.7 0.0218

 $\begin{array}{l} 10^{4}\kappa_{T} \\ V_{m} \\ 10^{3}\alpha \\ -\Delta C_{p} \\ \langle (\Delta V/V)^{2} \rangle \end{array}$

 $\frac{10^4 \kappa_T}{V_m}$ $\frac{10^3 \alpha}{10^3 \alpha}$

 $-\Delta C_p$ $\langle (\Delta V/V)^2 \rangle$

 $\frac{10^4 \kappa_T}{V_m}$ $10^3 \alpha$

 $\frac{10^4 \kappa_T}{V_m}$ $10^3 \alpha$

 $10^4 \kappa_T$

 $V_{\rm m}$ $10^3 \alpha$

 $-\Delta C_p$

 $10^4 \kappa_T$

 $V_{\rm m}$ $10^3 \alpha$

 $-\Delta C_p$

 $\langle (\Delta V/V)^2 \rangle$

 $\langle (\Delta V/V)^2 \rangle$

 $-\Delta C_p \\ \langle (\Delta V/V)^2 \rangle$

 $\frac{-\Delta C_p}{\langle (\Delta V/V)^2 \rangle}$

77.432

1.02

0.0

9.07

78.229

1.05

0.0

0.0336

76.214

0.92

2.0

7.71

76.940

0.95

2.1

0.0290

0.0313 0.0272

75.173

0.86

3.4

6.70

75.843

0.88

3.6

0.0256

0.0240

74.269

0.80

4.7

5.93

74.894

0.82

5.0

0.0229

0.0216

T = 348.13 K

72.752

0.73

7.0

0.0181

4.86

73.307

0.75

7.4

71.220

0.66

9.7

4.02

71.710

0.68

10.2

0.0192 0.0162

69.949

0.61

0.0153 0.0135 0.0121

3.46

70.388

0.62

12.5

11.9

68.856

0.56

3.04

69.257

0.57

14.2

0.0142 0.0127

13.5

67.896

0.53

0.0110

2.68

68.274

0.54

0.0114

15.6

14.9

				p (MPa)				
0.1	20	40	60	100	150	200	250	300	
			(e) $r_{1} = 0$	0.50247					
		·	() 2]-						
			T = 288	.15 K					
6.42	5.69	5.11	4.64	3.94	3.35	2.94	2.62	2.37	
73.880	72.997	72.214	71.515	70.304	69.041	67.968	67.032	66.201	
0.86	0.81	0.76	0.72	0.64	0.58	0.55	0.52	0.49	
0.0	1.5	2.6	3.6	5.4	7.5	9.2	10.5	11.6	
0.0208	0.0187	0.0169	0.0155	0.0134	0.0116	0.0104	0.0094	0.0086	
			T = 298	.14 K					
6.78	5.99	5.36	4.85	4.09	3.44	3.00	2.68	2.43	
74.519	73.581	72.753	72.016	70.747	69.436	68.330	67.369	66.515	
0.89	0.83	0.78	0.73	0.66	0.60	0.56	0.53	0.50	
0.0	1.6	2.8	3.8	5.7	7.9	9.7	11.1	12.2	
0.0225	0.0202	0.0182	0.0167	0.0143	0.0123	0.0109	0.0099	0.0091	
			T = 313	.14 K					
7.06	6.28	5.65	513	4 34	3 64	3 1 5	2 79	2 52	
75.542	74.548	73.665	72.875	71.514	70.110	68.935	67.921	67.027	
0.94	0.87	0.81	0.76	0.69	0.62	0.58	0.54	0.51	
0.0	1.7	3.0	4.1	6.2	8.6	10.5	12.0	13.2	
0.0243	0.0219	0.0200	0.0183	0.0158	0.0135	0.0119	0.0107	0.0098	
			T = 323	.14 K					
797	6.85	6.05	5 41	1 16	2.68	217	2 6 2	2 50	
76 206	75 100	74 220	72 285	71.060	70 510	5.17	2.03	2.33	
0.230	0.80	0.83	0.78	0.71	0.519	09.320	055	07.382	
0.97	1.8	37	1 A	65	9.04	11.0	12.6	13.8	
0.0277	0.0245	0.0210	0.0108	0.0167	0.0140	0.0123	0.0111	0.0103	
0.0277	0.0245	0.0217	0.0190	0.0107	0.0140	0.0123	0.0111	0.0103	
			T = 338.	.13 K					
8.62	7.37	6.43	5.71	4.69	3.88	3.35	2.97	2.65	

Table IX. (Continued)

					p (MPa))			
	0.1	20	40	60	100	150	200	250	300
			(f) $x_1 = 0$.75398				
				T = 288.	15 K				
$10^4 \kappa_T$	6.78	6.01	5.39	4.88	4.12	3.46	3.01	2.68	2.43
$V_{\rm m}$	102.503	101.210	100.066	99.046	97.288	95.472	93.945	92.621	91.448
$10^3 \alpha$	0.89	0.81	0.74	0.70	0.63	0.57	0.53	0.49	0.46
$-\Delta C_p$	0.0	2.2	4.0	5.6	8.5	11.5	14.0	15.9	17.7
$\langle (\Delta \dot{V}/V)^2 \rangle$	0.0158	0.0142	0.0129	0.0118	0.0101	0.0087	0.0077	0.0069	0.0064
				T = 298	8.14				
$0^4 \kappa_T$	7.35	6.40	5.66	5.09	4.26	3.57	3.11	2.76	2.47
V _m	103.414	102.014	100.793	99.718	97.882	95.996	94.411	93.038	91.831
$0^{3}\alpha$	0.92	0.83	0.77	0.72	0.65	0.59	0.54	0.50	0.47
$-\Delta C_p$	0.0	2.3	4.2	5.9	9.0	12.2	14.7	16.8	18.6
$\langle (\Delta V/V)^2 \rangle$	0.0176	0.0155	0.0139	0.0127	0.0108	0.0092	0.0082	0.0074	0.0067
				T = 313	8.14				
$0^4 \kappa_T$	8.10	6.95	6.09	5.42	4.48	3.73	3.23	2.87	2.56
/	104.862	103.309	101.975	100.811	98.848	96.854	95.189	93.752	92.491
$0^{3}\alpha$	0.96	0.87	0.80	0.75	0.68	0.61	0.56	0.52	0.49
$-\Delta C_p$	0.0	2.5	4.5	6.4	9.7	13.1	15.9	18.1	20.0
$\langle (\Delta V/V)^2 \rangle$	0.0201	0.0175	0.0155	0.0140	0.0118	0.0100	0.0088	0.0080	0.0072
				T = 323	3.14				
$10^4 \kappa_T$	8.49	7.29	6.37	5.66	4.65	3.84	3.31	2.93	2.63
V	105.937	104.293	102.882	101.654	99.593	97.515	95.796	94.319	93.021
$10^{3}\alpha$	0.99	0.90	0.83	0.78	0.70	0.63	0.57	0.53	0.50
$-\Delta C_n$	0.0	2.6	4.8	6.8	10.2	13.8	16.7	19.0	21.1
$\langle (\Delta V/V)^2 \rangle$	0.0215	0.0188	0.0166	0.0150	0.0125	0.0106	0.0093	0.0083	0.0076
				T = 338	3.13				
$0^4 \kappa_T$	9.42	7.95	6.87	6.04	4,90	4.02	3.45	3.04	2.71
V	107.535	105.700	104.151	102.819	100.610	98.408	96.597	95.049	93.694
$10^{3}\alpha$	1.04	0.94	0.86	0.81	0.73	0.65	0.59	0.55	0.52
$-\Delta C_{p}$	0.0	2.8	5.2	7.3	11.0	14.9	18.0	20.5	22.6
$\langle (\Delta V/V)^2 \rangle$	0.0246	0.0212	0.0185	0.0165	0.0137	0.0115	0.0100	0.0090	0.0081
				T = 348.	13 K				
$10^4 \kappa_{\pi}$	10.05	8 36	715	6.26	5.07	417	3 58	313	2 74
V	108 660	106 699	105 064	103 668	101 365	99,067	97 174	95 560	94 170
' m 103	1 07	0.96	0.80	0.83	075	0.67	0.61	0.56	0.53
	1 - 1 / /	v	0.07	0.05	0.10	0.07	0.01	0.00	0.00
-4C	0.0	3.0	55	77	11.6	157	189	21.5	23.8

Table IX. (Continued)

Properties of Mixtures of 2-n-Butoxyethanol with Water

to, those of pure water [14]. The decrease with increase in temperature of the κ_T for the first composition does not persist much above 313.14 K, and for $x_1 = 0.01596$ the κ_T have increased to exceed those for water before that temperature is reached. The isobaric κ_T for [acetonitrile (1) + water] [15] and [methanol (1) + water] [14] have κ_T which remain below those for water to much higher compositions: $0.1 < x_1 < 0.2$ for (acetonitrile + water) and $0.25 < x_1 < 0.35$ for (methanol + water).

3.3. Volume Fluctuations

Table IX includes normalized volume fluctuations [16], $\langle (\Delta V/V)^2 \rangle$, defined by Eq. (4)

$$\langle (\Delta V/V)^2 \rangle = RT\kappa_T/V_{\rm m} \tag{4}$$

where $V_{\rm m}$ is the molar volume, to extend those obtained by Koga and Westh [17] at 0.1 MPa and 298.14 K. The $\langle (\Delta V/V)^2 \rangle$ have an estimated error of $\pm 1-2\%$. The $V_{\rm m}$ in Table IX were calculated as a function of temperature at chosen pressures from the densities at 0.1 MPa and the volume

Fig. 3. Temperature dependence of normalized volume fluctuations, $\langle (\Delta V/V)^2 \rangle$, in 2-*n*-butoxy-ethanol (1) + water at 0.1 MPa. (\bigcirc) $x_1 = 0.007$; (\triangle) $x_1 = 0.016$; (\square) $x_1 = 0.05$; (\diamondsuit) $x_1 = 0.175$; (\bigtriangledown) $x_1 = 0.502$; (+) water.

ratios from Eq. (2) using the coefficients from Table VII. The $\langle (\Delta V/V)^2 \rangle$ for five of the six compositions and those for water calculated from the data of Easteal and Woolf [14] are shown in Fig. 3 at 0.1 MPa. The value at $x_1 = 0.016$ at 298 K is greater than the corresponding value in Ref. 17 by about 0.0028, an amount which exceeds the combined maximum uncertainties and, taken with the other data at that temperature from Table IX, gives no indication of the inflection point which Koga and Westh obtained near that composition. Figure 3 shows that, as the temperature increases, the $\langle (\Delta V/V)^2 \rangle$ for $x_1 = 0.007$, 0.016, and 0.05 increase rapidly and move toward those for water. At the highest temperature, which is close to the phase boundary for $x_1 = 0.016$, the $\langle (\Delta V/V)^2 \rangle$ for $x_1 = -0.007$, 0.016, and water are virtually coincident. A similar trend appears to be present in the data for $x_1 = 0.175$, for which the phase boundary is closest at about 358 K. Koga [18] proposed a mixing scheme of three regions for this system with a transition between them which depends on the temperature and composition: region I, $x_1 < 0.017$ at 298 K, where the hydrogen bond network of water is enhanced by the BE; region II, $0.017 < x_1 < 0.46$ at 298 K, typified by water-rich and BE-rich clusters; and region III, $x_1 > 0.46$ at 298 K,

Fig. 4. Temperature dependence of normalized volume fluctuations, $\langle (\Delta V/V)^2 \rangle$, in 2-*n*-butoxy-ethanol (1) + water at 100 MPa. Symbols as in the legend to Fig. 3.

where micelles are significant. The rapid change in $\langle (\Delta V/V)^2 \rangle$ for $x_1 \approx 0.016$ shown in Fig. 3 begins close to the temperature of 298 K identified by Koga [18] as the temperature for transition of this composition from I to II at 0.1 MPa. In contrast, his data indicate that the I-II transition at the same pressure for $x_1 \approx 0.007$ was near 348 K. Figure 4 shows that the movement of the $\langle (\Delta V/V)^2 \rangle$ of the mixtures towards those for water seen in Fig. 3 is not detectable at 100 MPa. The suppression of the phase separation [2, 3] before this pressure is reached would be expected from the influence of pressure in disrupting the hydrogen bond structure in region I, and adversely affecting the formation and stability of clusters and micelles in regions II and III.

3.5. Isobaric Expansivities

Isobaric expansivities, α , also given in Table IX, were calculated by fitting the $V_{\rm m}$ at a chosen pressure to a quadratic in T and differentiating analytically

$$\alpha = (\partial \ln V_{\rm m} / \partial T)_p \tag{5}$$

The α have an estimated error of $\pm 2-4\%$. The values at 0.1 MPa at $x_1 = 0.5025$ and 0.7540 for 298.14 and 323.14 K agree within 1% with those interpolated from the data of Onken [19]. A direct comparison with the measurements of Davies et al. [20] is not possible, as their data are not true thermal expansivities.

3.4. Isobaric Molar Heat Capacity, C_p

The effect of pressure on the isobaric molar heat capacity is given by

$$\Delta C_{p} = C_{p} - C_{p} (0.1 \text{ MPa}) = -\int_{0.1 \text{ MPa}}^{p} (TM/p) \{ (\partial \alpha / \partial T)_{p} + \alpha^{2} \} dp \quad (6)$$

where C_p (0.1 MPa) is the isobaric molar heat capacity at 0.1 MPa, M is the molar mass, and ρ is the density of the liquid at p. The α were expressed by a quadratic equation in T to enable analytic differentiation. The error in the ΔC_p is estimated to be $\pm 1 \text{ J} \cdot (\text{mol} \cdot \text{K}^{-1})$. The change in the C_p with either temperature or pressure is not very large at low x_1 but increases more rapidly at higher compositions. Apparent molal heat capacities and molar heat capacities at 0.1 MPa are available [10, 21] for some of the temperatures and compositions of the data in Table IX.

4. CONCLUSION

The volumetric data have provided values for the normalized volume fluctuations in this system over an extensive range of temperature, pressure, and composition. The magnitude of the fluctuations moves close to those for the major component, water, as the phase boundary is approached. The inflection point in the normalized volume fluctuations at low x_1 at 0.1 MPa and 298 K observed by Koga and Westh [15] has not been detected.

ACKNOWLEDGMENT

The authors wish to express their gratitude for the meticulous measurements of the densities at atmospheric pressure by Z. J. Derlacki.

REFERENCES

- 1. H. Mensah-Brown and W. A. Wakeham, Int. J. Thermophys. 16:237 (1995).
- 2. G. Schneider, Z. Phys. Chem. N.F. 37:333 (1963).
- 3. G. M. Schneider, in *Water: A Comprehensive Treatise*, F. Franks, ed. (Plenum, New York, 1972), p. 381.
- 4. C. M. Ellis, J. Chem. Educ. 44:405 (1967).
- 5. R. Malhotra and L. A. Woolf, J. Chem. Thermodyn. 25:1189 (1993).
- 6. R. Malhotra and L. A. Woolf, Int. J. Thermophys. 14:1021 (1993).
- 7. R. Malhotra and L. A. Woolf, Int. J. Thermophys. 16:901 (1995).
- 8. R. Malhotra and L. A. Woolf, Fluid Phase Equil. 94:227 (1994).
- 9. Y. Koga, J. Kristiansen, and A. Hvidt, J. Chem. Thermodyn. 25:31 (1993).
- 10. G. Roux, G. Perron, and J. E. Desnoyers, J. Solut. Chem. 7:639 (1978).
- 11. M. I. Davis, M. C. Molina, and G. Doheret, Thermochim. Acta 131:153 (1988).
- 12. G. Douheret, A. Pal, and M. I. Davis, J. Chem. Thermodyn. 22:99 (1990).
- 13. Y. Koga, K. Tamura, and S. Murakami, J. Solut. Chem. 24:1125 (1995).
- 14. A. J. Easteal and L. A. Woolf, J. Chem. Thermodyn. 17:49 (1985).
- 15. A. J. Easteal and L. A. Woolf, J. Chem. Thermodyn. 20:693 (1988).
- 16. Y. Koga, J. Phys. Chem. 100:5172 (1996).
- 17. Y. Koga and P. Westh, Bull. Chem. Soc. Japan 69:1505 (1996).
- 18. Y. Koga, J. Phys. Chem. 96:10466 (1992).
- 19. U. Onken, Z. Electrochem. 63:321 (1959).
- 20. J. V. Davies, F. W. Lau, L. T. N. Le, T. T. W. Lai, and Y. Koga, *Can. J. Chem.* 70:2659 (1992).
- 21. T. Atake and Y. Koga, Natsu Sokutei 21:130 (1994).